3.140 \(\int \cot ^5(c+d x) \sqrt{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=193 \[ \frac{43 a^2}{96 d (a \sec (c+d x)+a)^{3/2}}-\frac{15 a^2}{16 d (1-\sec (c+d x)) (a \sec (c+d x)+a)^{3/2}}-\frac{a^2}{4 d (1-\sec (c+d x))^2 (a \sec (c+d x)+a)^{3/2}}-\frac{21 a}{64 d \sqrt{a \sec (c+d x)+a}}+\frac{2 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{a}}\right )}{d}-\frac{107 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{2} \sqrt{a}}\right )}{64 \sqrt{2} d} \]

[Out]

(2*Sqrt[a]*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/d - (107*Sqrt[a]*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/(Sqrt[
2]*Sqrt[a])])/(64*Sqrt[2]*d) + (43*a^2)/(96*d*(a + a*Sec[c + d*x])^(3/2)) - a^2/(4*d*(1 - Sec[c + d*x])^2*(a +
 a*Sec[c + d*x])^(3/2)) - (15*a^2)/(16*d*(1 - Sec[c + d*x])*(a + a*Sec[c + d*x])^(3/2)) - (21*a)/(64*d*Sqrt[a
+ a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.157803, antiderivative size = 193, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 7, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.304, Rules used = {3880, 103, 151, 152, 156, 63, 207} \[ \frac{43 a^2}{96 d (a \sec (c+d x)+a)^{3/2}}-\frac{15 a^2}{16 d (1-\sec (c+d x)) (a \sec (c+d x)+a)^{3/2}}-\frac{a^2}{4 d (1-\sec (c+d x))^2 (a \sec (c+d x)+a)^{3/2}}-\frac{21 a}{64 d \sqrt{a \sec (c+d x)+a}}+\frac{2 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{a}}\right )}{d}-\frac{107 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{2} \sqrt{a}}\right )}{64 \sqrt{2} d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^5*Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*Sqrt[a]*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/d - (107*Sqrt[a]*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/(Sqrt[
2]*Sqrt[a])])/(64*Sqrt[2]*d) + (43*a^2)/(96*d*(a + a*Sec[c + d*x])^(3/2)) - a^2/(4*d*(1 - Sec[c + d*x])^2*(a +
 a*Sec[c + d*x])^(3/2)) - (15*a^2)/(16*d*(1 - Sec[c + d*x])*(a + a*Sec[c + d*x])^(3/2)) - (21*a)/(64*d*Sqrt[a
+ a*Sec[c + d*x]])

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cot ^5(c+d x) \sqrt{a+a \sec (c+d x)} \, dx &=\frac{a^6 \operatorname{Subst}\left (\int \frac{1}{x (-a+a x)^3 (a+a x)^{5/2}} \, dx,x,\sec (c+d x)\right )}{d}\\ &=-\frac{a^2}{4 d (1-\sec (c+d x))^2 (a+a \sec (c+d x))^{3/2}}-\frac{a^3 \operatorname{Subst}\left (\int \frac{4 a^2+\frac{7 a^2 x}{2}}{x (-a+a x)^2 (a+a x)^{5/2}} \, dx,x,\sec (c+d x)\right )}{4 d}\\ &=-\frac{a^2}{4 d (1-\sec (c+d x))^2 (a+a \sec (c+d x))^{3/2}}-\frac{15 a^2}{16 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{3/2}}+\frac{\operatorname{Subst}\left (\int \frac{8 a^4+\frac{75 a^4 x}{4}}{x (-a+a x) (a+a x)^{5/2}} \, dx,x,\sec (c+d x)\right )}{8 d}\\ &=\frac{43 a^2}{96 d (a+a \sec (c+d x))^{3/2}}-\frac{a^2}{4 d (1-\sec (c+d x))^2 (a+a \sec (c+d x))^{3/2}}-\frac{15 a^2}{16 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{3/2}}-\frac{\operatorname{Subst}\left (\int \frac{-24 a^6-\frac{129 a^6 x}{8}}{x (-a+a x) (a+a x)^{3/2}} \, dx,x,\sec (c+d x)\right )}{24 a^3 d}\\ &=\frac{43 a^2}{96 d (a+a \sec (c+d x))^{3/2}}-\frac{a^2}{4 d (1-\sec (c+d x))^2 (a+a \sec (c+d x))^{3/2}}-\frac{15 a^2}{16 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{3/2}}-\frac{21 a}{64 d \sqrt{a+a \sec (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{24 a^8-\frac{63 a^8 x}{16}}{x (-a+a x) \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{24 a^6 d}\\ &=\frac{43 a^2}{96 d (a+a \sec (c+d x))^{3/2}}-\frac{a^2}{4 d (1-\sec (c+d x))^2 (a+a \sec (c+d x))^{3/2}}-\frac{15 a^2}{16 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{3/2}}-\frac{21 a}{64 d \sqrt{a+a \sec (c+d x)}}-\frac{a \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{d}+\frac{\left (107 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{(-a+a x) \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{128 d}\\ &=\frac{43 a^2}{96 d (a+a \sec (c+d x))^{3/2}}-\frac{a^2}{4 d (1-\sec (c+d x))^2 (a+a \sec (c+d x))^{3/2}}-\frac{15 a^2}{16 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{3/2}}-\frac{21 a}{64 d \sqrt{a+a \sec (c+d x)}}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{-1+\frac{x^2}{a}} \, dx,x,\sqrt{a+a \sec (c+d x)}\right )}{d}+\frac{(107 a) \operatorname{Subst}\left (\int \frac{1}{-2 a+x^2} \, dx,x,\sqrt{a+a \sec (c+d x)}\right )}{64 d}\\ &=\frac{2 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{a}}\right )}{d}-\frac{107 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{64 \sqrt{2} d}+\frac{43 a^2}{96 d (a+a \sec (c+d x))^{3/2}}-\frac{a^2}{4 d (1-\sec (c+d x))^2 (a+a \sec (c+d x))^{3/2}}-\frac{15 a^2}{16 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{3/2}}-\frac{21 a}{64 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 0.301505, size = 102, normalized size = 0.53 \[ \frac{\cot ^4(c+d x) \sqrt{a (\sec (c+d x)+1)} \left (107 (\sec (c+d x)-1)^2 \text{Hypergeometric2F1}\left (-\frac{3}{2},1,-\frac{1}{2},\frac{1}{2} (\sec (c+d x)+1)\right )-2 \left (32 (\sec (c+d x)-1)^2 \text{Hypergeometric2F1}\left (-\frac{3}{2},1,-\frac{1}{2},\sec (c+d x)+1\right )-45 \sec (c+d x)+57\right )\right )}{96 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^5*Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(Cot[c + d*x]^4*(-2*(57 + 32*Hypergeometric2F1[-3/2, 1, -1/2, 1 + Sec[c + d*x]]*(-1 + Sec[c + d*x])^2 - 45*Sec
[c + d*x]) + 107*Hypergeometric2F1[-3/2, 1, -1/2, (1 + Sec[c + d*x])/2]*(-1 + Sec[c + d*x])^2)*Sqrt[a*(1 + Sec
[c + d*x])])/(96*d)

________________________________________________________________________________________

Maple [B]  time = 0.335, size = 407, normalized size = 2.1 \begin{align*} -{\frac{ \left ( -1+\cos \left ( dx+c \right ) \right ) ^{2} \left ( \cos \left ( dx+c \right ) +1 \right ) ^{2}}{384\,d \left ( \sin \left ( dx+c \right ) \right ) ^{8}}\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( 384\,\sqrt{2} \left ( \cos \left ( dx+c \right ) \right ) ^{4}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ( 1/2\,\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \right ) +321\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}} \right ) -768\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ( 1/2\,\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \right ) +410\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}-642\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}} \right ) +384\,\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ( 1/2\,\sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \right ) -142\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}-298\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}+321\,\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}} \right ) +126\,\cos \left ( dx+c \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^5*(a+a*sec(d*x+c))^(1/2),x)

[Out]

-1/384/d*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(cos(d*x+c)+1)^2*(384*2^(1/2)*cos(d*x+c)^4*(-2*
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+321*cos(d*x+c)^4*(-2
*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-768*cos(d*x+c)^2*2^(1/2)*(-2*
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+410*cos(d*x+c)^4-642
*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+384*2^(1/2)*
(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-142*cos(d*x+c)^3
-298*cos(d*x+c)^2+321*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+126*
cos(d*x+c))/sin(d*x+c)^8

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 2.63913, size = 1438, normalized size = 7.45 \begin{align*} \left [\frac{384 \,{\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \sqrt{a} \log \left (-8 \, a \cos \left (d x + c\right )^{2} - 4 \,{\left (2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} - 8 \, a \cos \left (d x + c\right ) - a\right ) + 321 \,{\left (\sqrt{2} \cos \left (d x + c\right )^{4} - 2 \, \sqrt{2} \cos \left (d x + c\right )^{2} + \sqrt{2}\right )} \sqrt{a} \log \left (-\frac{2 \, \sqrt{2} \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) - 1}\right ) - 4 \,{\left (205 \, \cos \left (d x + c\right )^{4} - 71 \, \cos \left (d x + c\right )^{3} - 149 \, \cos \left (d x + c\right )^{2} + 63 \, \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{768 \,{\left (d \cos \left (d x + c\right )^{4} - 2 \, d \cos \left (d x + c\right )^{2} + d\right )}}, \frac{321 \,{\left (\sqrt{2} \cos \left (d x + c\right )^{4} - 2 \, \sqrt{2} \cos \left (d x + c\right )^{2} + \sqrt{2}\right )} \sqrt{-a} \arctan \left (\frac{\sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right ) - 384 \,{\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \sqrt{-a} \arctan \left (\frac{2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, a \cos \left (d x + c\right ) + a}\right ) - 2 \,{\left (205 \, \cos \left (d x + c\right )^{4} - 71 \, \cos \left (d x + c\right )^{3} - 149 \, \cos \left (d x + c\right )^{2} + 63 \, \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{384 \,{\left (d \cos \left (d x + c\right )^{4} - 2 \, d \cos \left (d x + c\right )^{2} + d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/768*(384*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*sqrt(a)*log(-8*a*cos(d*x + c)^2 - 4*(2*cos(d*x + c)^2 + co
s(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)) - 8*a*cos(d*x + c) - a) + 321*(sqrt(2)*cos(d*x + c
)^4 - 2*sqrt(2)*cos(d*x + c)^2 + sqrt(2))*sqrt(a)*log(-(2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x +
c))*cos(d*x + c) - 3*a*cos(d*x + c) - a)/(cos(d*x + c) - 1)) - 4*(205*cos(d*x + c)^4 - 71*cos(d*x + c)^3 - 149
*cos(d*x + c)^2 + 63*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/(d*cos(d*x + c)^4 - 2*d*cos(d*x +
c)^2 + d), 1/384*(321*(sqrt(2)*cos(d*x + c)^4 - 2*sqrt(2)*cos(d*x + c)^2 + sqrt(2))*sqrt(-a)*arctan(sqrt(2)*sq
rt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(a*cos(d*x + c) + a)) - 384*(cos(d*x + c)^4 - 2*co
s(d*x + c)^2 + 1)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x
 + c) + a)) - 2*(205*cos(d*x + c)^4 - 71*cos(d*x + c)^3 - 149*cos(d*x + c)^2 + 63*cos(d*x + c))*sqrt((a*cos(d*
x + c) + a)/cos(d*x + c)))/(d*cos(d*x + c)^4 - 2*d*cos(d*x + c)^2 + d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**5*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 4.74632, size = 271, normalized size = 1.4 \begin{align*} -\frac{\sqrt{2}{\left (\frac{384 \, \sqrt{2} a \arctan \left (\frac{\sqrt{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{2 \, \sqrt{-a}}\right )}{\sqrt{-a}} - \frac{321 \, a \arctan \left (\frac{\sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{\sqrt{-a}}\right )}{\sqrt{-a}} + \frac{8 \,{\left ({\left (-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a\right )}^{\frac{3}{2}} a^{2} + 15 \, \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} a^{3}\right )}}{a^{3}} + \frac{3 \,{\left (21 \,{\left (-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a\right )}^{\frac{3}{2}} a - 19 \, \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} a^{2}\right )}}{a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4}}\right )} \mathrm{sgn}\left (\cos \left (d x + c\right )\right )}{384 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/384*sqrt(2)*(384*sqrt(2)*a*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/sqrt(-a) - 321*
a*arctan(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/sqrt(-a) + 8*((-a*tan(1/2*d*x + 1/2*c)^2 + a)^(3/2)*a^2
 + 15*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*a^3)/a^3 + 3*(21*(-a*tan(1/2*d*x + 1/2*c)^2 + a)^(3/2)*a - 19*sqrt(-
a*tan(1/2*d*x + 1/2*c)^2 + a)*a^2)/(a^2*tan(1/2*d*x + 1/2*c)^4))*sgn(cos(d*x + c))/d